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1. Introduction 
Interplanetary  spacecraft  are  traditionally  controlled  by  sequences  of 

commands  generated by a team of engineers.  These  sequences  are  uplinked  to 
the  spacecraft,  which  executes  them  in a more-or-less  linear  fashion.  The 
commands  that  constitute a sequence  range  from  very  low-level  commands 
(e.g.  "Toggle  power  switch 27.") to  relatively  high-level  commands  such  as 
"Turn  the  spacecraft  to  attitude  A." 

Sequence-based  commanding  has  sucessfully  met  the  challenge  of 
controlling  spacecraft  many  hundreds of millions of miles  from  Earth  with 
extreme  precision  and  often in the  face of hardware  failure.  But  the  manual 
generation of sequences  is  difficult,  time-consuming,  and  expensive.  This  is 
mainly  because  sequences  are  executed  open-loop, so erroneous  sequences  can 
cause  loss of data  or,  in  extreme  cases,  loss of an  entire  mission.  Thus, 
sequences  must  be  constructed  with  exquisite  care  and  painstakingly  checked 
and  re-checked  for  correctness  before  they  are  uplinked  to  the  spacecraft. 
Fu r the rmore ,   any   unexpec ted   ha rdware   f a i lu re s   o r   env i ronmen ta l  
interactions  during  sequence  execution  will  cause  the  state of the  spacecraft  to 
diverge  from  its  expected  state.  This  usually  causes  the  spacecraft  to  abort  the 
sequence  and  enter a safe  mode,  requiring  additional  time-consuming  and 
expensive  human  intervention. 

Efforts  are  currently  underway  at  the  Jet  Propulsion  Laboratory  (JPL)  and 
NASA  Ames  Research  Center  (ARC)  to  design a control  .system  for a new 
generation of spacecraft  that  can  operate  with  much  less  human  intervention, 
and  execute  missions  in  unmodelled  environments  such  as  the  surfaces  of 
comets.  These  autonomous  spacecraft  are  designed  to  accept very high  level 
commands  and  execute  them  reliably  even  in  the  face of hardware  failure, 
unexpected  environmental  interactions,  and  errors  or  inconsistencies  in  the 
command  set. To accomplish  this  requires  radical  rethinking of the  entire 
spacecraft  command  process  and  control  architecture.  For  example,  some 
planning  functions  that  are  currently  performed  on  the  ground  by  humans 
must  now  be  performed  automatically by the  spacecraft.  Data  representations 
and  processes  designed  for  humans  in  the  loop  must  be  redesigned  to  make 
them  suitable  for  on-board  operation. 

In  this  article  we  explore  the  design of an  executive  for  an  autonomous 
spacecraft.  The  executive  is  responsible  for  translating  high-level  commands, 
whether  they  come  from  the  ground  or  from  an  on-board  planner,  into  the 



low-level  commands  understood  directly by the  spacecraft  hardware.  This 
requires a paradigm  shift  from  an  open-loop  sequence-based  executive  to a 
closed-loop  executive  that  is  aware of and  knows  how  to  respond  robustly  to 
unexpected  contingencies.  

To  understand  the  operation  of a closed-loop  autonomous  spacecraft 
executive  it  is  instructive  to  begin  with a description  of  how  traditional 
sequence-based  commands  work.  This  will  illustrate  some of the  complex  and 
subtle  issues  that  an  autonomous  executive  must  face. 

2. Spacecraft Commanding 101 
To  get a feel  for  some of the  issues  involved in generating  and  analyzing 

spacecraft  command  sequences,  consider a very  simple  command:  turning  on 
the  power  for a device- 
on a spacecraft,  and so 
executed  in a situation 
power  bus  to  operate  the 
c a t a s t r o p h i c .  

Overloading a power 

Electrical  power  is a heavily  oversubscribed  resource 
if one  is  not  careful a power-on  command  can  be 

where  there is not  enough  power  available on the 
device.  The  consequences of such a mistake  can  be 

bus  causes  the  voltage  on  the  bus  to  drop  below  the 
level  at which- the  *devices  on  the  bus  can  operate  reliably, a condition  known 
as a "bus  undervolt."  On  an  unmanned  spacecraft,  this  triggers  emergency 
hardware  interlocks  that  turn  off  the  power  to  all  but  the  most  vital 
subsystems,  an  event  known  as a "bus  trip."  After a bus  trip,  the  spacecraft 
goes  into a mode of operation  known  as  "safe  mode"  where  it  does  nothing  but 
try  to  establish  contact  with  Earth.  Getting  the  spacecraft  out of safe  mode 
requires  manual  intervention,  which  takes  hours if not  days. If a spacecraft 
enters  safe  mode  just  before a crucial  science  observation  the  opportunity  for 
that  observation  is  usually  irretrivably  lost. If a spacecraft  enters  safe  mode 
during a critical  mission  maneuver  such as an  orbit  insertion  the  entire 
mission  can  be  lost. So even a simple  thing  like  turning  on a power  switch  is 
potentially  catasrophic'.  

The  situation  is  further  complicated by the  fact  that  there  is  usually  no 
way  to  measure  the  amount of power  available  on a spacecraft.  Sequences  are 
designed  based  on  predictive  models of available  power,  which  is a complicated 
function of the  spacecraft  state,  which  in  turn  is a function of the  sequence 
being  executed.  Thus,  every  command  in a sequence  can  interact  with  every 
other  command  in  the  sequence.  Making a change in one  part of the  sequence 
can  cause a catastrophic  failure  in a different  part of the  sequence.  The 
situation  is  exacerbated  by  the  fact  that  spacecraft  resource  margins  are 
always  very  small. As a result,  sequences  are  very  brittle;  the  tiniest  change 
can  have a global  and  potentially  catastrophic  impact.  This  is  what  makes 
sequences so difficult  and  expensive  to  develop.  (Critical  sequences  such  as 
orbit  insertions,  which  can  cause loss of mission if they  enter  safe  mode,  can 
take  many  years  to  generate.) 

I On  the  Cassini  spacecraft, if certain  non-critical  devices  fail  during 
Saturn  orbit  insertion  the  sequence  will  proceed  without  them  despite  the  fact 
that  backups  are  available.  Because of the  possibility of a bus  trip,  the  risk  to 
the  mission of turning  on  the  backup  is  deemed  to  be  higher  then  the  risk of 
proceeding  without  the  device. 



Of course, a bus  trip  is  not  the  only  thing  that  can go wrong.  Turning  on a 
device  is  itself a fairly  complicated  process  that  involves  many  intermediary 
devices,  any  one of which  can  fail. A device's  power  terminal  is  typically 
connected  to a power  distribution  unit  (PDU)  which  contains a number of 
power  switches  that  control  the  flow of electricity  from a power  bus  to  various 
spacecraft  devices.  (See  figure 1.) The  PDU  is  in  turn  connected  to a 
peripheral  data  communications  bus  which  is also connected  to  the 
spacecraft 's  computer  through a bus  controller  (which  controls a data 
communications  bus,  not  to  be  confused with  the  power  bus).  Any of these 
components  may  be  redundant,  including  the  computer. 

Backplane I 

Peripheral Bus 
" 1 - - - - - -  1 

Power Camera 

Figure 1 :  A simplified block diagram of the hardware 
components involved in turning on a camera. 

The  code  that  implements  the  sequence  command,  "Turn on device X," 
implements  something  along  the  lines  of: 

Ask  the  bus  controller  to  send a message  to  the  PDU  to  change  the 
state of the  device X power  switch  to ON. 

So an  anomaly  in  turning  on  the  power  to a device  could  be  caused by a 
problem  in  the  device  itself,  or  it  could  result  from a problem in the  PDU,  the 
PDU's  bus  interface,  the  bus  master,  or  the  power  source.  It  could also be 
caused by some  other  device  on  the  spacecraft.  For  example, a bus  client  can 
fail  in a way  that  causes  it  to  inject  noise  on  the  bus  and  interfere  with  the 
operation  of  other  bus  clients.  In  fact,  just  about  anything  on  the  spacecraft 
can  cause  anomalous  behavior  anywhere  else  on  the  spacecraft.  Unexpected 
effects  can also be  caused by spacecraft  position  or  attitude,  or  interactions 
with  external  environmental  phenomena  like  radiation. 

An  example of the  kinds of interactions  that  can  occur:  on  Cassini,  firing 
the  main  engine  can  leave  chemical  deposits  on  the  lens of the  science 
camera,  causing  it  to  malfunction.  To  correct  this  problem,  the  camera  is 
equipped  with a little  windshield  wiper  to  clean  the  lens.  When  this  wiper  is 
operating,  the  effects of the  reaction  torque  can  be  measured  in  the 
spacecraft's  overall  attitude. 

3. Procedural  and  Declarative Knowledge Representations 
By  the  time a command  like  "Turn on device X" is  incorporated  into a 

sequence a tremendous  amount of knowledge  has  been  brought  to  bear, 
including  knowledge of mission  goals,  the  design of the  spacecraft,  physics, 
and  common  sense.  This  knowledge  is  all  "compiled  away"  in  the  final 



sequence.  There  is  no  way  to  extract  from a sequence  the  reasoning  that  led  to 
its  construction,  or  the  constraints  that  it was designed  to  obey. 

For  example,  consider  the  simple  sequence,  "Turn  on  the  camera,  then  take 
a picture."  We  humans  know  that  the  order  in  which  these  steps  are 
performed  is  important  because we know  that  electronic  devices  like  cameras 
need  power  in  order  to  function.  We  apply  this  knowledge so effortlessly  that 
we  are  usually  not  even  aware of it.  To  appreciate  the  situation  from  the  point 
of view of a computer,  consider  the  following  excerpt  from  an  actual  sequence 
for  the  Galileo  spacecraft,  currently  in  orbit  around  Jupiter: 

04284795:56:0  98-001/00:01:00.266 CMD,35A,20ZS3B,PRI, 
98-001/00:01:00.266,1;  

04284795:71:0  98-001/00:01:10.266 CMD,35DML,20ZS4A,PRI, 
9 8 - 0 0 1 / 0 0 : 0 1 : 1 0 . 2 6 6 , 4 0 0 0 , 4 0 , 0 2 , C 0 , 4 6 , C 4 , 0 0 , 4 0 , 0 0 , 0 4 , 0 2 ,  
0 4 , 0 2 , 0 4 , 0 2 , 0 4 , 0 2 , 0 4 ;  

or,  translated  into  English,  "At  56  seconds,  do  command  35A.  At 71 seconds,  do 
command  35DML."  Unless  you  happen  to  be a member of the  Galileo 
sequencing  team  you  probably  have  no  idea  what  35A  and  35DML  actually  do, 
which  puts  you  in  the  same  position  as  the  spacecraft  itself.  The  spacecraft 
has  no  knowledge of the  interactions  between  the  35A  and  35DML  commands, 
so it  has  no  basis  for  making  any  choices  about  their  execution.  The 
spacecraft  has  no  basis  for  determining  whether,  for  example,  the 15 second 
delay  between  command  35A  and  35DML  is  really  necessary, if it  can  be  longer 
or  shorter, if the  order of these  two  commands  could  be  reversed,  and if either 
of them  puts  the  spacecraft  at  risk  for a bus  trip  or  other  catastrophe.  All  the 
information  needed  to  make  such  decisions  has  been  "compiled  away"  in  the 
process of generating  the  sequence, so all the  spacecraft  can  do  is  blindly 
follow  its  dictates,  and  call  home if the  slightest  thing  goes  wrong. 

If we  want  our  spacecraft  to  exhibit  less  brittle  behavior,  then  the 
knowledge  that  currently  gets  compiled  away  during  sequence  generation 
must  be  somehow  provided  to  the  spacecraft.  One  approach  is  to  build an 
explicit d e c l a r a  f i v e  model of the  spacecraft  and  use  various  Artificial 
Intell igence (AI)  search  and  deduction  tecnniques  to  make  operational 
decisions.  Unfortunately,  the  models  needed  to  support  such  an  approach  tend 
to  be  very  large  and  difficult  to  maintain.  For  example,  to  figure  out  from 
declarative  knowledge  even as simple a thing as how  much  timing  flexibility 
exists  in  the  above  sequence  the  spacecraft  needs  to  know  what  the  35A 
command  does  (it  turns on  the  magnetometer),  what  the  35DML  command  does 
(it  loads  the  magenetometer's  firmware - DML  stands  for  direct  memory  load), 
how  much  power  the  magnetometer  uses,  how  long  it  takes  after  the 
magnetometer  is  turned  on  before  it  is  ready  to  accept  commands,  when  the 
magnetometer  is  actually  needed,  how  much  heat  the  magnetometer  generates, 
etc.  etc.  Things  get  immensely  more  complicated  for  commands  to,  say,  turn 
the  spacecraft  or  fire  the  main  engine. 

An  alternative  to  generating a declarative  model of the  spacecraft  (and 
associated  computational  machinery)  is  to  incrementally  expand  the  existing 
p r o c e d u r a l  vocabulary of sequences  to  include  explicit  represenations  of,  say, 
execution  time  flexibility.  For  example,  consider  the  following  command 
" s e q u e n c e " :  

Step 1: Do  command  35A  between  times T1 and  T2. 



Step 2: Do command  35DML no less  than 15  seconds  after  step  1. 

It  is  not  possible  to  give  these  instructions in a traditional  command 
sequence,  where  every  step  must be associated  with a particular  fixed 
execution  time.  With a simple  extension  to  the  sequence  vocabulary  and  the 
underlying  execution  machinery  we  have  'given  the  spacecraft  the  ability  to 
display  some  flexibility  in  execution  without  the  need  to  generate a complete 
declarative  model. 

We  can  envision  additional  increments  to  the  expressiveness of our 
command  language.  For  example,  we  might  want  to  protect  against  the 
possibility of a bus  trip by saying,  "Before  executing  command 35A wait  until 
the  system  power  margin  is  at  least  five  watts."  Here we have  extended  the 
vocabulary  to  to  allow  the  system  to  wait  for a particular  condition  to  become 
true  before  taking  an  action.  This  naturally  leads  to a host of other  extensions: 
timeouts,  descriptions of corrective  action if timeouts  expire,  etc. 

These  extensions  to  the  sequencing  vocabulary  provide  the  ability  to 
express  spacecraft  instructions  that  are  not  nearly as brittle as traditional 
sequences.   Because  they  are  backwards-compatible  extensions  to  the 
traditional  sequencing  paradigm,  procedural  representations  tend  to  be  easier 
to  use  than  their  declarative  counterparts,  which  require a more  radical  shift 
in  how  one  thinks  about  spacecraft  commanding. Also, the  computational 
machinery  needed  to  execute  procedural  representations  tends to be  relatively 
simple  and  efficient. 

However,  purely  procedural  representations  are  limited  in  that  they 
cannot  provide  the  spacecraft  with  any  knowledge of what  the  commands  it  is 
executing  actually d o .  Extending  the  command  vocabulary  provides  more 
power  to  express  the r e s u l t s  of deliberations  about  command  interactions,  but 
we  have  not  done  anything  to  simplify  the  deliberations  themselves.  You  have 
to  know  just  as  much  about  the  spacecraft  to  generate a flexible  sequence as 
you do  to  generate a brittle  one. 

F o r t u n a t e l y ,   t h e   d e c l a r a t i v e   a n d   p r o c e d u r a l   a p p r o a c h e s   a r e  
complementary  rather  than  antagonistic.  We  have  developed a system  for 
executing  robust  procedures  that  can  serve  both as a spacecraft  sequencing 
system,  and as an  integrating  component  for a hybrid  autonomous  control 
a r c h i t e c t u r e   t h a t   c o m b i n e s   p r o c e d u r a l   a n d   ( m u l t i p l e )   d e c l a r a t i v e  
representations.  This  hybrid  architecture, of which  our  executive  is a part,  is 
described  in  the  next  section.  The  executive  itself is  described in more  detail 
in  section 5. 

4. Remote  Agent  Architecture 
We  have  developed  an  architecture  called  Remote  Agent  (RA)  [Bernard981 

that  combines  declarative  and  procedural  mechanisms  for  representing  the 
knowledge  required  for  autonomous  operation.  (See  figure 2.) RA  consists of 
four  components:  the  "smart"  executive  (EXEC), a mission  manager2 (MM), a 

2 The  mission  manager  and  planner/scheduler  are  actually  implemented 
within a single  software  module  called PS/MM (or  MM/PS).  They  use  the  same 
modelling  language  and  computational  machinery.  They  are  distinguished 
because  they  use  different  models  (though  the  same  modelling  language)  and 
serve  two  distinct  architectural  roles. 



planner/scheduler (PS) [Muscettola97],  and a system  called  MIR  (mode 
identification  and  recovery)  [Williams961  for  reasoning  about  the  finite-state 
behavior of the  spacecraft.  RA will be  be  used in a flight  experiment  to  control 
the  New  Millennium  Deep  Space 1 spacecraft (DS1) for a one-week  period in 
1999. 

I 1  I Planning  Experts I 
(incl.  Navigation) 
" I Monitors I 

Figure 2: The Remote Agent architecture  embedded within 
flight software 

RA  interacts  with  the  spacecraft  through a real-time  control system  (RT), 
which  directly  controls  the  spacecraft  hardware.  RT  consists of a set of 
control  and  monitoring  tasks  which  provide  the  core  functionality  for  the  RA. 
RT  functionality  ranges  from  relatively  simple  device  drivers  that  provide 
direct  access  to  spacecraft  hardware,  to  complex  control  loops  for  controlling 
the  spacecraft's  attitude  and  trajectory.  Information  about  the  status of RT 
control  loops  and  hardware  sensors  is  passed  back to RA  either  directly  or 
through a set of moni tor s .  The PS component of RA also interacts  with a set of 
planning  experts,  which  are  subroutines  for  computing  answers  to  domain- 
specific  queries  like  how  much  time  it  will  take  to  turn  from  one  attitude  to 
a n o t h e r .  

EXEC  is  the  core of the  architecture.  It  coordinates  all  the  activities in both 
RA  and  in  the  external  software  components.  EXEC  provides  both  an  extended 
procedural   vocabulary  for   expressing  instruct ions,   and  an  integrated 
declarative  knowledge  base.  EXEC  itself  has  very  limited  deduction  capabilities, 
relying  instead on MM, PS and  MIR  to  perform  most of the  model-based 
r e a s o n i n g .  

PS and  MIR  are  both  model-based,  and  each  has  its  own  modelling 
language.  The PS modelling  language  (which is  also used  for  MM)  has 
facilities  for  describing  the  interactions of spacecraft  activities  evolving  in 
time,  and  allows  one  to  describe  constraints  among  acitivities  (like  turns)  and 
states  (like  hardware  configurations).  The  language  also has vocabulary  for 
talking  about  time  which  is  used  to  describe  how  long  different  activites  are 
expected  to  take. PS uses  this  information to generate  plans of action  in  terms 
of activities  bound  to  temporal  intervals  whose  endpoints  are  not  fixed  in  time, 
but  simply  constrained  relative  to  one  another.  The  resulting  plans  are  thus 



both  concurrent  and  flexible,  that  is,  they  describe  activities  that go on  in 
parallel,  and  without  specifying  precisely  when  those  activities  are  to  take 
p l ace .  

The  MIR  modelling  language  has  facilities  for  describing  the  finite-state 
behavior  of  the  spacecraft  hardware.  For  example,  using  the  MIR  modelling 
language  one  can  express  the  fact  that if the  power  switch  for a device  is 
closed,  and  enough  power  is  available,  that  the  corresponding  device  should  be 
on.  The  MIR  models  are  used  in  two  ways,  for  fault  diagnosis  (mode 
identification  or  MI)  and  fault  recovery  (mode  recovery  or  MR).  Using  its 
models,  MIR  is  able  to  deduce  the  most  likely  actual  state of the  spacecraft 
hardware  given  the  observable  state,  i.e.  sensor  readings,  taking  into  account 
that  the  sensors  themselves  might  be  faulty.  MIR  can  also  use  the  same  models 
to  derive  sequences of actions  that  will  produce a desired  configuration of the 
hardware.  These  capabilities  are  used  to  provide  EXEC  with an abstracted  view 
of the  spacecraft  state,  and a mechanism  for  recovering  from  faults. 

RA is  written  entirely in Common  Lisp.  It  runs  both  in  Allegro  Common 
Lisp  under  Unix,  and  on  the  flight  processor  (a  Rad6000 - a radiation-hardened 
processor  similar  to a PowerPC)  under a custom  port of Harlequin  Common  Lisp 
for  the  vxWorks  real-time  operating  system. 

5. Remote Agent Executive 
The  Remote  Agent  Executive  coordinates  the  activities of all  the  other 

components of the  spacecraft  software.  EXEC  consists of a core  language  which 
provides  an  expressive  vocabulary  for  procedural  knowledge,  and a set of 
higher-level  facilities  built  on  top of this  core,  including  flexible  plan 
execution,  configuration  management,  and  resource  management.  Each  of 
these  facilities  is  described in turn  in  the  following  subsections. 

5.1 ESL 

The  core of EXEC is a lanaguage  called  ESL  (Execution  Support  Language) 
[Gat961  which  provides a rich  representation  for  the  sort  of  procedural 
knowledge  alluded  to  in  section 3 above.  ESL  consists of about  half a dozen 
loosely  coupled  feature  sets  that  provide  facilities  for  handling  unexpected 
contingencies,  achieving  goals,  managing  and  coordinating  parallel  tasks,  and 
managing  resources.  In  addition,  ESL  provides a backchaining  logical 
database,  essentially a little  Prolog  interpreter,  which  is  the  central 
mechanism  through  which  the  procedural  and  declarative  paradigms  interact. 

5.2 Flexible  Plan Execution 

EXEC  provides a facility  for  executing  the  plans  produced by PS,  which  are 
not  linear  sequences of commands,  but  rather  abstract  descriptions of parallel 
activities. A PS  plan  consists of a set of timelines.  Each  timeline  corresponds 
to a description of some  aspect of the  spacecraft's  state  at  varying  levels of 
abstraction.  For  example, a timeline may describe a simple  state  like  whether a 
device  is  on  or  off,  or a more  complex  abstract  state  like  whether  or  not  the 
spacecraft  is  turning,  and  what  its  target  attitude  is. 

Each  timeline  is  subdivided  into a set of temporal  intervals  over  which  the 
timeline's  state  description  is  constant.  These  intervals  are  referred  to  as 
t o k e n s .  For  example,  the  timeline  for  the  power  state of a device  usually 



consists of a sequence of tokens  alternating  between on  and off .  The  timeline 
for  the  spacecraft  attitude  will  alternate  between t u r n i n g  and c o n s t a n t -  
attitude tokens. 

The  beginning  and  ending  times of the  tokens  are  in  general  not  specified 
in  terms of absolute  time,  but  rather in relation  to  the  start  and  end  times of 
other  tokens.  This  allows  an  explicit  representation  of  the  dependencies 
among  tokens,  and  enables  considerable  robustness  and  flexibility.  For 
example,  consider  the  example  from  section 3, where  the  magnetometer  had  to 
be  turned  on  fifteen  seconds  before  loading  its  software.  This  dependency  can 
be  represented  in a PS plan by two  tokens,  one  on  the  magnetometer's  power 
state  timeline  which  states  that  the  power  is  on,  and  another  on  the 
magnetomer's  activity  timeline  which  states  that  the  software  is  being  loaded. 
The  temporal  constraint  is  represented by a plan  annotation  that  says  that  the 
start of the  first  token  must  come  at  least  fifteen  seconds  before  the  start of the 
second  token. 

As one  might  imagine,  executing a plan  specified  using  this  notation  is 
considerably  more  challenging  than  executing a simple  linear  sequence  of 
commands.  But  it  generates  behavior  that  is  far  more  flexible  and  reliable 
because  the  executive  now  has  explicit  information  about  the  dependencies 
between  steps. In a traditional  sequence, if anything  went  wrong  while 
turning  on  the  magnetometer  the  entire  sequence  would  fail  because  the 
spacecraft  would  have no  way  to  know  the  potential  repurcussions of this 
deviation  from  the  plan.  With  the  new  representation,  EXEC  knows  exactly 
what  the  dependencies  are. If turning  on  the  magnetometer  fails,  EXEC  is  free 
to  take  some  corrective  action as long as the  software-loading  activity  doesn't 
start  for  at  least  fifteen  seconds  after  the  power  is  successfully  turned  on,  and 
all  the  other  temporal  constraints  specified  in  the  plan  are  met. 

EXEC's  plan  execution  system  (called  the  plan  runner)  is  built  on  top of 
ESL's  task  management  facilities.  Each  plan  timeline  has a thread of execution 
associated  with  it.  Each  thread  issues  commands  to  control  those  aspects of the 
spacecraft  state  corresponding  to  its  timeline.  The  threads  use  ESL's 
synchronization  facilities  to  coordinate  their  actions  to  conform  to  the 
temporal  constraints  specified  in  the  plan.  The  result  is a system  that  is  far 
more  robust  than a traditional  sequence-based  executive. 

5.3 Resource Management 

Scarce  resources  are a fact of life  on  spacecraft.  On-board  processes 
contend  for a limited  number of devices.  Shared  resources,  such as energy 
and  data  storage,  are  subject  to  hard  (and  relatively  severe)  limits,  as  well  as 
environmental  influences  (such  as  solar  exposure  for  battery  charging)  that 
change  these  limits  over  time. 

Resource  management in RA is  done  mainly  by PS, which  typically  uses 
worst-case  estimates of resource  utilization.  However,  the  uncertainty  in  the 
environment  and  its  effect on the  true  resource  utilization  can  make  the PS 
resource  usage  estimates  inaccurate.  The  problem  is  particularly  severe  on 
p l ane ta ry   rove r s ,   wh ich   mus t   con tend   w i th   huge   env i ronmen ta l  
u n c e r t a i n t i e s .  

EXEC  provides a general  architecture  for  managing  resources  at  run-time, 
providing a layer of protection  against  inaccurate  predictions by PS, and  also a 
measure  of  safety  for  manually  generated  procedures.  EXEC's  resource 



manager (RM) architecture  consists of a managing  object  for  each  resource. 
When a task  wants  to  take an action  that  affects  the  state of a resource  it 
registers  its  intent  to  do  so  with  the  resource  manager  object.  The  manager 
object  checks  all  the  intentions  pertaining  to a particular  resource  and  finds a 
mutually  consistent  set.  Those  tasks  making  the  mutually  consistent  requests 
are  allowed  to  proceed;  all  other  requests  are  blocked  until  enough  tasks in the 
first  set  release  their  requests  to  allow a new  mutually  consistent  set  to 
p r o c e e d .  

This  general  architecture  is  currently  implemented  only  for  discrete-state 
resources  like  hardware  configurations.  The  manager  object  for a discrete 
state  resource  is  called a p r o p e r t y  lock. Property  locks  and  the  facilities  for 
accessing  them  are  currently  built in to ESL. 

The  property  lock  mechanism is quite  powerful.  It  automatically  manages 
not  only  the  synchronization of multiple  tasks  accessing a particular  resource, 
but also the  actual  achievement,  maintenance  and  (if  needed)  restoration of 
the  physical  state  corresponding  to  that  resource.  However,  it  also  lacks  some 
important  functionality.  It  does  not  take  into  account  process  priorities.  (This 
is a very  complicated  problem;  see  section 6.) It  does  not  currently  perform 
deadlock  detection,  although  this  could  be  added  without  difficulty.  And, as 
mentioned  before,  the  property  lock  mechanism  is  limited  to  managing 
discrete  states. 

5.4 Configuration Management 

PS plans  describe  the  evolution of the  spacecraft  state  usually  at a high 
level of abstraction,  leaving  it  up  to  EXEC  to  fill  in  the  details  at  run  time.  For 
example,  the  plan  may  specify  that a particular  capability  is  needed  for a 
particular  activity,  but  it  might  not  say  anything  at  all  about  the  actual 
hardware  configuration  required  to  provide  that  capability.  It  is  the 
responsibility of EXEC  to  manage  the  actual  configuration of the  spacecraft  to 
make  it  conform  to  the  constraints  imposed by the  plan.  This is challenging 
for  several  reasons.  First,  spacecraft  are  quite  complicated,  with  many  tightly 
coupled  interacting  components. (As discussed  in  section 2, even as simple  an 
action  as  turning  on a device  can  be  quite  complicated.)  The  best 
configuration  for a particular goal is  often a function of the  current 
configuration.  Second,  the  design of the  spacecraft  can  change  during  the 
software  development  process.  Third,  the  spacecraft  is  expected  to  continue  to 
operate  even if some of its  components  fail  in  flight. 

EXEC  provides a generic  configuration  management  facility  (CM)  which 
uses a simple  model of the  spacecraft  hardware  topology  to  automatically 
generate  the  r ight  sequence of commands  to  control  the  spacecraft  
configuration.  The  model  is  described  in  terms of a class  hierarchy  and a 
connectivity  diagram. A generic  library  of  configuration  management 
routines  uses  the  model  to  control  the  hardware. 

A typical  model  includes  descriptions of all  the  devices,  their  types,  and 
their  data  and  power  connections.  CM  uses  this  information  to  respond  to 
requests  to  provide  devices of a particular  class.  For  example, if a request  is 
made  to  provide a camera,  CM  will  go  through  the  list of available  cameras, 
select  one,  and  configure  it .   This  typically  involves  considerations  of 
hardware  states  other  than  just  the  camera.  For  example,  turning  on a camera 
usually  involves  sending a command  to a power  switching  unit,  not  the 
c a m e r a .  



Besides  configuring  the  hardware  to  provide  requested  functionality,  CM 
also  coordinates  configuration  requests  from  multiple  parallel  tasks  at  run- 
time  using  ESL's  property  lock  mechanism.  This  provides  an  additional 
measure of safety  against  flaws in the  PS  plan.  (PS  plans  are  guaranteed  to  be 
correct  with  respect  to  the PS  models,  but  the  models  can  have  errors  with 
respect  to  the  actual  situation on  the  spacecraft.) 

CM  makes  hardware  configuration  management  code  much  easier  to  write 
and  maintain  than  hand-crafted  code. If the  spacecraft  configuration 
changes,  only  the  hardware  model  needs  to  be  changed.  Commanding a 
particular  configuration  usually  involves  only  one  line of code. 

For  example,  the  following  code  is an excerpt  from  the DS1 CM  model. 

(define-device-class :camera 
:power-function  fsc-power-request 
:talk-function camera-talk-msg) 

(define-device :camera-A :camera 
:powered-thru  :powerbus-1 
:switched-thru :fsc-camera-switch1 
:ready-state  ((:health-state :ok) 

(:power-state : o n ) ) )  

Based  on  the  above  model,  configuring  and  using a camera  requires  only a 
tiny  snippet of code: 

(with-selected-device :camera 
(take-pictures))  

This  code  would  select a camera,  make  it  ready by taking  actions  to  make  it 
powered  on  and  healthy,  and  then  take  pictures.  Until  the  picture-taking  is 
complete,  any  task  that  tries  to  change  the  state of the  camera  away  from  its 
ready  state  will  be  prevented  from  running.  Furthermore, if the  camera 
deviates  from  its  ready  state  during  picture  taking  then  two  things  will 
happen.  First,  the  picture-taking  task  will be  notified  that  the  camera  is  no 
longer  ready  and  given  an  opportunity  to  either 1)  take  corrective  action  or 2) 
wait  for  an  automatic  recovery  (generated by MIR).  All  this  complexity  is 
completely  hidden  from  the  programmer  behind  the  abstractions  of  high- 
level  control  constructs  like  WITH-SELECTED-DEVICE.  More  information  on 
how  contingencies  are  handled  can  be  found  in  [Gat97]. 

6. Related Work 
There  are  many  robust  execution  systems  in  the  literature.  The  one  most 

closely  related  to  EXEC  is  RAPs  [Firby891  and  the  related  3T  architecture 
[Bonasso97]. In  fact,  an  early  version of EXEC  was  implemented  using  RAPs. 
Unlike  ESL,  RAPs  is  not  an  extension  to a general-purpose  programming 
language,  but a unique  language  in  its  own  right  with  its  own  semantics.  This 
made  it  cumbersome  to  combine  robust  execution  with  general-purpose 
computation,  which  is  what  motivated  the  development of ESL.  RPL 
[McDermott91]  is  another  direct  decendent of RAPs  whose  design  influenced 
ESL,  along  with  PRS  [Georgeff87]  and  RL  [Lyons93]. [Freed981 describes a RAP- 
like  language  that  was  used  in  an  interesting  automated  air-traffic  control 
a p p l i c a t i o n .  



At  the  other  end of the  implemetation  spectrum,  TCA  [Simmons901  is a 
robust  execution  system  that  is  implemented  not as a language  or a language 
extension,  but as a subroutine  library.  TCA  combines a robust  execution 
system  with  an  interprocess  communications  system,  and  uses  message  passing 
to  excercize  control  over  processes.  Because  TCA  does  not  provide  new  control 
constructs,  it  requires  quite a bit of dicipline  on  the  part of the  programmer  to 
hand-compile  his  intentions  into  TCA  calls. A recent  refinement of TCA 
embeds  the  subroutine  library  within  an  extension  of  C++  called  TDL 
[Simmons98].  

7. Summary and Future Work 
Traditional  spacecraft  commanding  requires  ground  operators  to  generate 

detailed  and  inflexible  command  sequences.  These  sequences  are  difficult  and 
expensive  to  generate,  and  do  not  contain  enough  information  to  allow  the 
spacecraft  to  respond  intelligently  to  deviations  from  expected  behavior, 
which  makes  them  inherently  brittle. 

At  the  core of a new  control  architecture  (the  Remote  Agent)  designed  to 
make  spacecraft  more  self-reliant  and  less  dependent  on  ground  intervention 
is  an  executive  (EXEC)  which  implements  an  expanded  vocabulary  for 
commanding  spacecraft.  EXEC  provides a wide  range of capabilities  at 
different  levels of abstraction,  ranging  from  simple  failure  recovery 
mechanisms,  to  the  execution of high-level  flexible  plans  and  the  ability  to 
command  the   spacecraf t   d i rec t ly   in   t e rms   of   abs t rac t   hardware  
configurations.  EXEC's  design  is  highly  modular,  making  it  able  to  integrate a 
wide  variety of external  facilities.  In  the  RA  architecture,  EXEC  integrates a 
planner  and  scheduler (PS), a discrete-state  reasoning  system  (MIR),  and  real- 
time  control  software  (RT). 

EXEC's  flexibility  gives  it much of its power, but i t  is  also a source of certain 
weaknesses.  Because  there  are  few  architectural  requirements  levied  on  the 
modules  that  EXEC  connects,  the  result  can  be a mishmash of different 
conflicting  representations.   RA  uses  three  different  representation 
languages.  It  represents  redundant  information in all  three,  which  can  cause 
serious  software  configuration  control  problems. 

EXEC's  resource  management  capabilties  are  also  somewhat  impoverished 
at  the  moment.  It  can  only  manage  discrete-state  resources,  it  does  not  take 
task  priority  into  account  when  making  resource  decisions,  and  it  does  not 
have a mechanism  for  detecting  and  recovering  from  deadlocks.  However,  the 
general  architecture  was  designed  to  allow  all  these  capabilities  to  be  added 
without  major  difficulty. 

In  the  future  we  hope  to  develop  an  autonomy  system  that  uses a more 
uniform  and  non-redundant  representation  among  its  different  components. 
We  also  intend  to  remedy  the  three  shortcomings of the  resource  manager 
listed  above.  Taking  task  priorities  into  account  presents a unique  problem. 
In  general,  high-priority  tasks  should  be  allowed  to  usurp  resources  from  low- 
priority  tasks.  However,  this  leads  to  very  difficult  problems  in  trying  to 
insure  the  consistency of the  dynamic  state of the  usurped  task.  This  is 
because,  in  general, a task may have  associated  with  it a number of c l e a n  u p  
p r o c e d u r e s  that  must  be  executed  before  the  task  can  be  safely  aborted.  But 
these  cleanup  procedures  can, in general,  take  arbitrarily  long  to  execute.  In 



general,  this  problem  devolves  to  the fu l l  planning  problem.  The  challenge 
will  be  to  find a heuristic  that  handles a useful  subset of the  general  case. 
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